

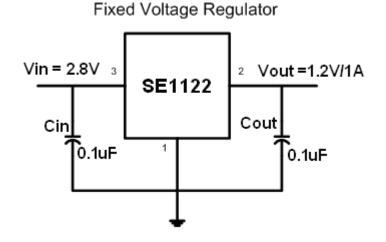
Description

SE1122 is a low dropout positive fixed-mode regulator with minimum of 1A output current capability. The product is specifically designed to provide well-regulated supply for low voltage IC applications such as high-speed bus termination and low current 1.2V logic supply. SE1122 is also well suited for other applications such as VGA cards. SE1122 is guaranteed to have a typical 1.3V dropout at full load current making it ideal to provide well-regulated outputs of 1.2 output voltage with 2.7V input voltage supply.

Pin Configuration

Features

- ➤ 1.3V typical dropout
- Fixed 1.2V± 2% output voltage
- Fast transient response
- Output current limiting
- Built-in thermal shutdown
- Good noise rejection
- Rugged 2KV ESD withstand capability.
- Available in SOT223 &TO252 Packages.
- > Works best with inexpensive electrolytic Capcitors.
- RoHS Compliant


Application

- PC peripheral
- Communication

Ordering Information

Device	Package	V _{OUT}
SE1122-HF	SOT-223	
SETT22-FIF	(Halogen Free)	Fixed output
SE1122-LF	TO252	voltages 1.2V
SET122-LF	(Lead free)	

Typical Application

Revision 1/21/2014

Absolute Maximum Rating

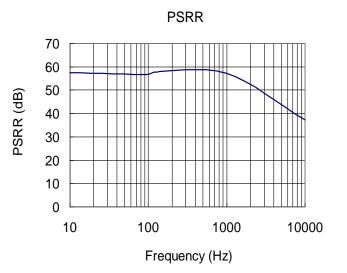
Symbol	Parameter	Maximum	Units	
V _{IN}	Input Supply Voltage	12	V	
θ _{JA}	Thermal Resistance Junction to Ambient (SOT-223)	140	°C/W	
TJ	Operating Junction Temperature Range	0 to 125	°C	
T _{STG}	Storage Temperature Range	-40 to 150	°C	
T _{LEAD}	Lead Temperature (Soldering 10 Sec)	260	°C	

Note 1: hermal Resistance Junction to Ambient (TO252) is 105 °C/W

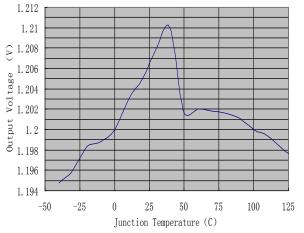
Electrical Characteristic

 V_{IN} =2.8V, I_{OUT} = 10mA, C_{IN} = 0.1µF, C_{OUT} = 0.1µF, TA = 25°C, unless otherwise specified.

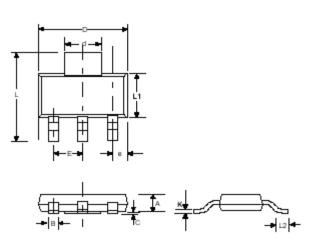
Symbol	Parameter	Test Condition	Min	Тур	Мах	Units
Vo	Output Voltage ⁽¹⁾		1.176	1.2	1.224	V
V _{SR}	Line Regulation ⁽¹⁾	2.8V < VIN < 12V		0.3	-	%/V
V_{LR}	Load Regulation ⁽¹⁾	$10mA \le I_{OUT} \le 1A$		0.0005		%/mA
lq	Quiescent Current			3	5	mA
V _D	Dropout Voltage (2)	I _{OUT} = 1A		1.3	-	V
I _{CL}	Current Limit		1.1			А
T _c	Temperature Coefficient			0.02		%/°C
OTP	Thermal Protection			175		°C
V _N	RMS Output Noise	T _A = 25°C, 10Hz ≤ f ≤ 10kHz		0.003		%V _o
R _A	Ripple Rejection Ratio	$\label{eq:constraint} \begin{array}{l} f = 120 Hz, \\ C_{OUT} = 22 \mu F \mbox{(Tantalum)}, \\ (V_{\text{IN}} - V_{\text{OUT}}) = 3 V, \mbox{I}_{\text{OUT}} = 10 \text{mA} \end{array}$		57		dB

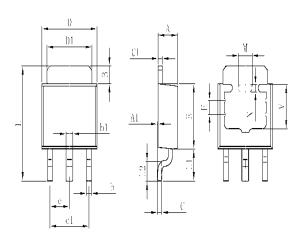

Notes:

1. Low duty cycle pulse testing with which T_J remains unchanged.


3. The dropout voltage is the input/output differential at which the circuit ceases to regulate against further reduction in input voltage. It is measured when the output voltage has dropped 2% from the nominal value obtained at $V_{IN} = V_{OUT} + V dropout$.

Dropout Voltage VS Output Current 1.30 1.25 1.20 1.15 1.10 1.05 1.00 0 200 400 600 800 1000 1200 Output Current (mA)





Outline Drawing for SOT-223

DIMENSIONS					
DIM ^N	INCHES		MM		
	MIN	MAX	MIN	MAX	
Α		0.071		1.80	
В	0.025	0.033	0.640	0.840	
С	0.012		0.31	—	
D	0.248	0.264	6.30	6.71	
d	0.115	0.124	2.95	3.15	
Е	l	0.090		2.29	
е	0.033	0.041	0.840	1.04	
L	0.264	0.287	6.71	7.29	
L1	0.130	0.148	3.30	3.71	
L2	0.012		0.310		
К	0.010	0.014	0.250	0.360	

Outline Drawing for TO252

Symbol	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min.	Max.	Min.	Max.	
A	2.200	2.400	0.087	0.094	
A1	0.000	0.127	0.000	0.005	
В	1.350	1.650	0.053	0.065	
b	0.500	0.700	0.020	0.028	
b1	0.700	0.900	0.028	0.035	
С	0.430	0.580	0.017	0.023	
c1	0.430	0.580	0.017	0.023	
D	6.350	6.650	0.250	0.262	
D1	5.200	5.400	0.205	0.213	
E	5.400	5.700	0.213	0.224	
е	2.300	2.300 TYP.		I TYP.	
e1	4.500	4.700	0.177 0.185		
F	1.200REF.		0.047REF.		
M	1.600REF.		0.063REF.		
N	0.450REF.		0.018REF.		
L	9.500	9.900	0.374	0.390	
L1	2.550	2.900	0.100	0.114	
L2	1.400	1.780	0.055	0.070	
V	3.800	REF.	0.150 REF.		

Customer Support

Seaward Electronics Incorporated – China Section B, 2nd Floor, ShangDi Scientific Office Complex, #22 XinXi Road Haidian District, Beijing 100085, China Tel: 86-10-8289-5700/01/05 Fax: 86-10-8289-5706 Seaward Electronics Corporation – Taiwan 2F, #181, Sec. 3, Minquan East Rd, Taipei, Taiwan R.O.C Tel: 886-2-2712-0307 Fax: 886-2-2712-0191 Seaward Electronics Incorporated – North America 1512 Centre Pointe Dr. Milpitas, CA95035, USA Tel: 1-408-821-6600

Last Updated - 1/21/2014

Revision 1/21/2014