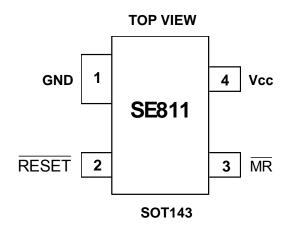
SE811

Description

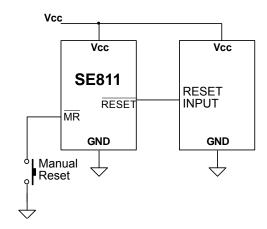
The SE811 is a cost-effective system supervisor Integrated Circuit (IC) designed to monitor V_{CC} in digital and mixed signal systems and provide a warning signal when the system power supply is out of working range, and a reset signal to the host processor when necessary. No external components are required. The SE811 also provides a manual reset input.

The reset output is driven active within 20µsec of V_{CC} falling through the reset voltage threshold. Reset is maintained active after V_{CC} rises above the RESET threshold. The SE811 has an active-low RESET output. The output of the SE809 is guaranteed valid down to V_{CC} =1V.

The SE811 is characterized for operation from -40° C to 125° C, junction temperature. The SE811 is optimized to reject fast transient glitches on the V_{CC} line. Low supply current of 7μ A (V_{CC}=3.3V) makes these devices suitable for battery powered applications. The output voltages range from 1.7V to 4.5V in 100mV increments. Standard voltage versions are 2.30, 2.63, 2.93, 3.08, 4.0, 4.38, and 4.63V.


Features

- Precision V_{CC} Monitor for 2.8V, 3.0V, 3.3V, and 5.0V Supplies
- > 150mSec typical RESET Output Delay.
- RESET Output Guaranteed to V_{CC}=1.0V
- Low 7μA Supply Current typical.
- V_{CC} Transient Immunity
- Manual reset input.
- ▶ 4-Pin SOT-143 Package
- No External Components
- ESD rating is 2KV(HBM).
- ➤ Wide Operating Temperature: -40°C to 125°C
- > 100% Lead (Pb)-Free


Application

- Computers
- Embedded systems
- Battery powered equipment
- Critical μP power supply monitoring

Pin Configuration

Application Diagram

SE811

Ordering/Marking Information (SOT143)

Ordering Information	Marking Information	
SE811xS	S811xa	
Suffix	Reset V _{CC} threshold(V)	The "x" den
L	4.63	The last cha
M	4.38	process.
J	4.00	
Т	3.08	
S	2.93	
R	2.63	

The "x" denotes a suffix for V_{CC} threshold. The last character is the batch number. A dot on top right corner is for lead-free process.

Absolute Maximum Ratings(1)

Parameter	Symbol	Value	Units	
Input Voltage	V _{CC}	5.5	٧	
Manual Reset Input	MR	-0.3 to (V _{CC} + 0.3)	V	
Output Voltage	RESET	-0.3 to (V _{CC} + 0.3)	٧	
Input Current		20	mA	
Output Current	I _{OUT}	20	mA	
Power Dissipation	P _D	Internally Limited (3)		
Output Short Circuit		Infinito		
Duration		Infinite		
Thermal Resistance,	0 220		Θ, Δ 230	°C/W
Junction-to-Ambient	Θ_{JA}	230	C/VV	
Operating Temperature	т	-40~ 125	$^{\circ}\!\mathbb{C}$	
Range	T _A -40~ 125		C	
Lead Temperature		260	°C	
(Soldering, 10 sec.)		200)	

Operating Rating⁽²⁾

Parameter	Symbol	Value	Units
Supply Input Voltage	V _{CC}	+2.0V to +5.5	V
Junction Temperature	TJ	-40 to +125	°C

SE811

Electrical Characteristics

Vcc=5V for L/M/J ;3.3V for T/S ;3.0V for R , T_A = 25°C, unless otherwise specified.

Symbol	Parameter	Condition	Min Typ I		Max	Unit
V _{CC}	Input Voltage		2.0	2.0 5.5		V
I _{CC}	Supply Current			7	10	μА
		SE811L-4.63V	4.51	4.63	4.75	
		SE811M-4.38V	4.27	4.38	4.49	
		SE811J-4.00V	3.90	4.00	4.10	
V_{TH}	Reset Threshold	SE811T-3.08V	3.00	3.08	3.16	V
		SE811S-2.93V	2.85	2.93	3.00	
		SE811R-2.63V	2.56	2.63	2.70	
		SE811R-2.30V	2.18	2.25	2.33	
	Reset Threshold Temperature			20		n n n /°C
	Coefficient ⁽⁴⁾			30		ppm/°C
	V_{CC} to Reset Delay V_{CC} = V_{TH} to			20	20	
	$(V_{TH} - 100 mV)$			20		µsec
	Reset Active Timeout Period	- 150		150		msec
V _{OL}	RESET Output Voltage Low	I _{SINK} = 3mA			0.4	V
V _{OH}	RESET Output Voltage High	I _{SOURCE} =	0.01/			V
		800μΑ	0.8V _{CC}			
Tmr	MR Minimum Pulse Width	10		µsec		
Tmd	MR to RESET Propagation Delay	1			µsec	
	ND love t Through ald	V_{LOW}			0.25Vcc	V
	MR Input Threshold		Open(High-Z)		V	

SE811

PIN DESCRIPTION:

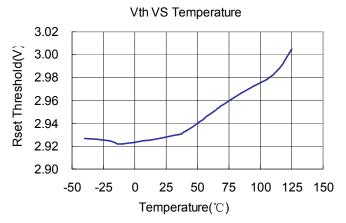
Pin No.	Symbol	Description
1	GND	Ground
2	RESET	RESET output remains low while Vcc is below the reset voltage
		threshold and for 150mSec(typ) after Vcc rises above reset threshold
3	MR	Manual Reset Input. A logic low on MR asserts. Reset remains asserted
		as long as MR is low and for 150ms after MR returns high. It can be
		driven from a TTL or CMOS-logic line, Or shorted to ground with a
		switch. Leave Open if unused.
4	Vcc	Supply Voltage (typ.)

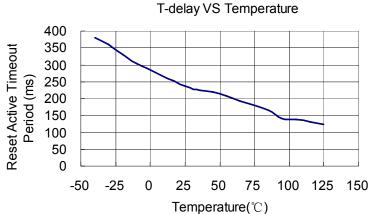
- Note 1: Exceeding the absolute maximum rating may damage the device.
- Note 2: The device is not guaranteed to function outside its operating rating.
- Note 3: The maximum allowable power dissipation at any T_A (ambient temperature) is calculated using: $P_{D(MAX)} = (T_{J(MAX)} T_A)/\Theta_{JA}$. Exceeding the maximum allowable power dissipation will result in excessive die temperature, and the regulator will go into thermal shutdown. See "Thermal Consideration" section for details
- **Note 4:** RESET threshold temperature coefficient is the worst case voltage change divided by the total temperature range.

SE811

Application Hints

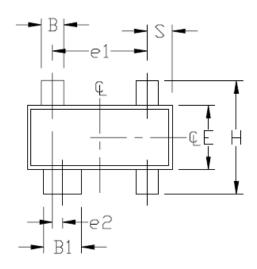
General Description


SE811 is the extension of SE809 family. It provide the same basic function as SE809, plus the additional $\overline{\text{MR}}$ function. The detailed operation of $\overline{\text{MR}}$ function is described below.

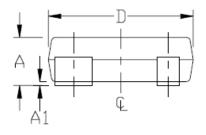

Manual Reset Input

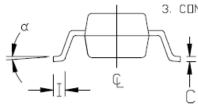
Many μP -based products require manual reset capability, allowing the operator, a test technician, or external logic circuitry to initiate a reset. A logic low on \overline{MR} will trigger the reset process. Reset remains asserted as long as \overline{MR} is low and for 150ms after \overline{MR} returns high. Leave open if unused. Connect a normally open momentary switch from \overline{MR} to \overline{GND} to create a manualreset function; external debounce circuitry is not required. If \overline{MR} is driven from long cables or if the device is used in a noisy environment, connecting a $0.1\mu F$ capacitor from \overline{MR} to ground provides additional noise immunity. It is important that the \overline{MR} pin is not connected to Vcc in applications.

SE811


Typical Performance Characteristics

SE811


OUTLINE DRAWING SOT-143



	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.031	0.047	0.787	1.194	
A1	0.001	0.005	0.025	0.127	
В	0.014	0.022	0.356	0.559	
B1	0.030	0.038	0.762	0.965	
С	0.0034	0.006	0.086	0.152	
D	0.105	0.120	2.667	3.048	
Ε	0.047	0.055	1.194	1.397	
e1	0.071	0.079	1.803	2.007	
65	0.008	BSC	0.200 BSC		
Н	0.082	0.098	2.083	2.489	
I	0.004	0.012	0.102	0.305	
S	0.018	0.024	0.450	0.600	
α	0*	8*	0°	8*	

NOTES:

- 1. D&E DO NOT INCLUDE MOLD FLASH.
- 2. MOLD FLASH OR PROTRUSIONS NOT TO EXCEED .15mm (.006")
- 3. CONTROLLING DIMENSION: MILLIMETER

SE811

Contact Information

Seaward Electronics Incorporated - China

Section B, 2nd Floor, ShangDi Scientific Office Complex,#22 Shangdi Xinxi Rd

Haidian District, Beijing 100085, China

Tel: 86-10-8289-5700/01/05

Fax: 86-10-8289-5706

Email: sales@seawardinc.com.cn

Seaward Electronics Corporation - Taiwan

2F, #181, Sec. 3, Minquan East Rd,

Taipei, Taiwan R.O.C Tel: 886-2-2712-0307 Fax: 886-2-2712-0191

Email: sales@seawardinc.com.tw

Seaward Electronics Incorporated – North America

1512 Centre Pointe Dr. Milpitas, CA95035, USA

Tel: 1-408-821-6600

Last Updated - 5/15/2009