

Description

The SE432L is a low voltage three terminal adjustable shunt regulator with a guaranteed thermal stability over applicable temperature ranges. The output voltage can be set to any value between V_{REF} (approximately 1.24 V) to 8V with two external resistors. This device has a typical output impedance of 0.25 Ω . Active output circuitry provides a very sharp turn on characteristic, making this device excellent replacement for Zener diodes in many applications.

The SE432L is characterized for operation from -40°C to 105°C, and two package options (SOT-23-3, TO-92) allow the designer the opportunity to select the proper package for their applications.

Features

- Low voltage operation (1.24V)
- Adjustable output voltage V₀ = V_{REF} to 8V
- Wide operating current range 60µA to 100mA
- > Low dynamic output impedance 0.30Ω (Typ.)
- > Trimmed bandgap design up to $\pm 0.5\%$.
- ESD rating is 2.5KV(Per MIL-STD-883D)
- > Available in Halogen-Free Packages.

Application

- Linear Regulators
- Adjustable Supplies
- Switching Power Supplies
- Battery Operated Computers
- > Instrumentation
- Computer Disk Drives

SOT-23-3, TO-92 (Top View) (Top View) Anode 3 1 Ref. 3 Ref.

Ordering Information

Part Number	Marking	Production Year Code	luction Year Code Week Code		Remarks
SE432XY-HF	<u>S</u> 432Lw	Starting with S, a bar on top of S is for production year 2001, and underlined S is for year 2002.		SOT23-3	X means SOT23-3; T means TO92; Y means accuracy:
SE432TY-LF	SE432L YYWW-LF	The next character is marked on top for 2003, and underlined for 2004. The naming pattern continues with consecutive characters for later years.	A-Z : 1-26 a-z : 27-52	TO92	05 : 0.5%; 1 : 1%; 2 : 2% HF : Halogen Free LF : Lead Free

Pin Configuration

Absolute Maximum Rating

Parameter	Symbol	Maximum	Units	
Cathode Voltage	V _{KA}	8	V	
Continuous Cathode Current	l _{KA}	150	mA	
Reference Current	I _{REF}	10	mA	
Operating Junction Temperature Range	TJ	150	°C	
Storage Temperature Range	T _{STG}	-45 to 150	°C	
Thermol Desistence		230 (SOT-23-3)	°0111	
mermai Resistance	AL U	220 (TO-92)	C/VV	
Lead Temperature (Soldering) 10 seconds	T _{LEAD}	260	°C	

Electrical Characteristics

Parameter		Symbol	Test Conditions & Circuit	Min	Тур	Max	Unit
Reference Voltage	1.240V ± 0.5% 1.240V ± 1.0% 1.240V ± 1.5% 1.240V ± 2.0%	V _{REF}	Test circuit #1 V _{KA} = V _{REF} , I _{KA} = 10mA	1234 1228 1221 1215	1240 1240 1240 1240	1246 1252 1259 1265	mV
Deviation of Refe Full Tempe	rence Voltage over rature Range	VI(DEV)	Test circuit #1 V _{KA} = V _{REF} , I _{KA} = 10mA, T _A = 0°C - 105°C	68			mV
Ratio of Change ir to the Change ir	n Reference Voltage n Cathode Voltage	ΔV _{REF} /ΔVKA	Test circuit #2 I _{KA} = 10mA, ΔV_{KA} = 8V to V _{REF}		-1.0	-2.7	mV/V
Reference	ce Current	I _{REF}	Test circuit #2 I _{KA} = 10mA, R1=10kΩ, R2 = ∞	Test circuit #2 0mA, R1=10kΩ, R2 = ∞ 0.15		-	μA
Deviation of Refe Full Tempe	Deviation of Reference Current over Full Temperature Range		Test circuit #2 I _{KA} = 10mA, R1=10kΩ, R2 = ∞ T _A = 0°C - 105°C		0.10		μΑ
Minimum Cathode Current for Regulation		I _{MIN}	Test circuit #1 V _{KA} = V _{REF}		60	100	μA
Off-state Ca	thode Current	IOFF	Test circuit #3 0.04 V _{KA} = 12V, V _{REF} = 0 0.04		0.8	μA	
Dynamic Impedance		Z _{ka}	Test circuit #1 I_{KA} = 100 μ A - 80mA, V_{KA} = V_{REF} , f \leq 1kHZ		0.30	1	Ω

Note 1: Upon Customer Request.

Typical Performance Characteristics

Stability Boundary Condition

Test Circuit for V_{KA} = 2V, 3V

The areas under the curves represent conditions that may cause the device to oscillate. For V_{KA} = 2V and 3V curves, R2 and V_{BAT} were adjusted to establish the initial V_{KA} and I_K conditions with CL = 0. V_{BAT} and CL then were adjusted to determine the ranges of stability. As the graph suggested, SE432L is unconditional stable with I_{K} from 0 to 100mA and with C_{L} from 0.001uF to 1uF.

SE432L Adjustable Precision Shunt Regulator

Symbol Diagram

Block Diagram

Test Circuits

Application Circuit

OUTLINE DRAWING SOT-23-3

DIMENSIONS					
DIM ^N	INC	HES	MM		
	MIN	MAX	MIN	MAX	
Α	0.110	0.120	2.80	3.04	
В	0.047	0.055	1.20	1.40	
С	0.083	0.104	2.10	2.64	
D	0.035	0.040	0.89	1.03	
E	0.070	0.080	1.78	2.05	
F	0.018	0.024	0.45	0.60	
G	0.015	0.020	0.37	0.51	
H	0.0005	0.004	0.013	0.10	
J	0.034	0.040	0.887	1.02	
K	0.003	0.007	0.085	0.18	
	-	0.027	-	0.69	

OUTLINE DRAWING TO-92

DIMENSIONS					
DIM ^N	INC	HES	MM		
	MIN	MAX	MIN	MAX	
Α	0.175	0.205	4.445	5.207	
В	0.170	0.210	4.318	5.334	
E	0.500	0.610	12.70	15.50	
F	0.016	0.021	0.407	0.533	
G	0.045	0.055	1.143	1.397	
Н	0.095	0.105	2.413	2.667	
J	0.080	0.105	2.032	2.667	
K	0.125	0.165	3.175	4.191	

Customer Support

<u>Seaward Electronics Incorporated – China</u> Section B, 2nd Floor, ShangDi Scientific Office Complex, #22 XinXi Road Haidian District, Beijing 100085, China Tel: 86-10-8289-5700/01/05 Fax: 86-10-8289-5706 Email : <u>sales@seawardinc.com.cn</u>

Seaward Electronics Incorporated – North America

1512 Centre Pointe Dr. Milpitas, CA95035, USA Tel: 1-650-444-0713

Last Updated - 11/2/2022